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Part I
Introduction to PEM method



“Unfortunately, our abilities to predict (monsoon) variability 
have not changed substantially over the last few decades.”

“Combination of modeling problems and empirical non-
stationarity has plagued monsoon prediction on interannual 
time scales. Empirical forecasts have to contend with the 
specter of statistical non-stationarity ….”

Webster, P.J., 2006: “The coupled monsoon system”, 
Chapter 2 in “The Asian Monsoon”.

Climate prediction of rainfall is 

a Long-standing Challenge



Dashed contour: 0.35

Four dynamical models’ MME Temporal correlation skill for JJA rainfall (1979-2010)

NCEP CFS version 2 (Saha et al. 2011), ABOM POAMA version 2.4 (Hudson et al. 2011), 

GFDL CM version 2.1 (Delworth et al. 2006), and FRCGC SINTEX-F model (Luo et al. 2005). 

AAM

0.31

Wang et al. 2015b

Dynamic Prediction of summer land monsoon rainfall



Prediction of AIRI (All Indian rainfall index) 

Predictand:

The AIRI is the total amount of summer (June-

to-September, JJAS) rainfall averaged over the 

entire Indian subcontinent.

AIRI

 Rainfall data：
AIRI data : IITM (1871-2016); IMD (2017)

 SST data :

ERSST monthly data (1871-2018.3)

 SLP, 2 meter temperature data:

The twentieth century (20C) reanalysis monthly data 

(1871–2012)

NCEP2 reanalysis monthly data (2013-2018.3)

Data



IMD official operational forecasts and dynamic 

model’s MMEs hindcast show no skills since 1989

(1989-2012)

Wang et al. 2015



Current dynamical models are

of little skill in seasonal prediction of mean rainfall 
anomalies over land; 

unable resolve extreme vents due to coarse resolution, 

premature for estimation of the potential predictability

New Approaches are demanded 

to study predictability and prediction



Rethinking Indian monsoon rainfall prediction in 
the context of the recent global warming

Bin Wang, Baoqiang Xiang, Juan Li, Peter. J. Webster, M. 
Rajeevan, Jian Liu, and Kyung-Ja Ha 

May 2015
Nature Communication

Physics-based empirical models (PEMs)



Four steps to establish PEMs

Identify major modes of variability (Often EOF modes or 
focus on Index)
Detect the sources of variability based on physical 
understanding of the  lead-lag relationships between the 
predictors and predictand (often rely on numerical 
experiments).
Construct PEMs using only physically meaningful predictors 
Estimate predictability using predictable mode analysis 
method. (Wang 2007)



How to search for predictors
• Only two predictor fields:  SST/2m air temperature over land and SLP 

anomalies——Reflecting ocean and land surface anomalous 

conditions

• Only two types of signals in the lower boundary anomalies:

a)persistent signals in the pre-forecast season. Reflect local positive 

feedback processes which may help maintain the lower boundary 

anomalies. 

b) tendency signals from the previous seasons to the pre-forecast 

season : denote changes before the pre-forecast season that often 

tip off the direction of subsequent evolution.



CP-ENSO and anomalous Asian Low predictors represent new predictability 

sources emerging during the recent global warming. Operational forecast and 

dynamical models do not capture these changes so failed seasonal prediction 

in the last 2-3 decades. The Physical based empirical model with the four 

predictors can produce a 92-y (1921-2012) retrospective independent forecast 

skill of 0.64, providing an estimate for the lower bound of ISMR predictability. 

Four physically consequential predictors for AIRI 

foreshadow EP-ENSO, Mega-ENSO, CP-ENSO and 

anomalous Asian Low.



How to Assess the model hindcast 
skill more rigorously?

Independent hindcast

Forward rolling independent hindcast

Real time forecast verification



24-y independent forecast validation

Training period 1900-1988 Forecast

R=0.61 R=0.51

92-y (1921-2012) forward rolling independent forecast

R=0.64

Practical 
predictability 
estimate



98 years rolling hindcast (the prediction equation is derived using only 50-y training data and the AIRI is predicted 
for the ensuing 10 years.)

CC (Predicted AIRI and Observed AIRI) =0.63 (1921-2017)
=0.54 (1989-2017)

Verification (2013-2018)



Part II A Summary:
Validation of the PEM 

predictions of the EA summer 
rainfall



1. MJ mean South China rainfall 
index

Ref: 

So-Young Yim, Bin Wang, 

Wen Xing, 2014: 

Prediction of early summer 

rainfall over South China 

by a physical-empirical 

model, Climate Dynamics, 

2014, 43(7): 1883-1891



Name Meaning Definition

IOWP_SST(T)

Indo-Pacific 

warm pool 

SST tendency

Feb-minus-Dec east-west tripolar SST tendency: 

(5°S-10°N, 70°E-100°E) + (15°N-25°N,120°E-160°E) –

(0-15°N,150°E-160°W)

NA_SST(T)
North Atlantic 

SST tendency

Feb-minus-Dec north-south tripolar SST tendency: 

(0-15°N,60°W-20°W) + (35°N-50°N,70°W-30°W) –

(20°N-30°N, 80°W-50°W)

Siberia_T2m(T)
Siberia T2m 

tendency 

Feb-minus-Dec T2M averaged over (55°N-70°N, 80°E-

140°E)

SCRI=0.503×IOWP_SST(T) + 0.301×NA_SST(T) + 0.382×Siberia_T2m(T)

Predictand:

MJ mean South China rainfall index (SCRI)——The normalized time series

of MJ rainfall anomaly averaged over the 72 stations over SC.



2013-2017 SCRI verification
(period in the paper: 1979-2012)

Fig.1 The observed (black) and predicted SCRI (red) during 2013-2017.



2. MJ mean Taiwan rainfall index 

Ref: 

So-Young Yim, Bin Wang, Wen 

Xing, Mong-Ming Lu, 2014: 

Prediction of Meiyu rainfall in 

Taiwan by multi-lead physical-

empirical models, Climate 

Dynamics, 2014, 44(11), 3033-

3042.



Name Meaning Definition

0-month lead predictors

WNP_SST(T)
Western North Pacific SST 

tendency
MA-minus-JF SST averaged over (15°N-25°N,130°E-180°E)

NA_SST(T) North Atlantic SST tendency
MA-minus-JF north-south tripolar SST tendency: (0-20°N, 60°W-15°W) + 

(45°N-55°N, 55°W-40°W) – (25°N-40°N, 65°W-40°W)

EA_T2m(T) East Asia T2m tendency MA-minus-JF T2M averaged over (30°N-60°N, 110°E-140°E)

TWRI = −0.531×WNP_SST(T) + 0.499×NA_SST(T) + 0.291×EA_T2m(T)

1-month lead predictors

IOWP_SST(T)
Indo-Pacific warm pool SST 

tendency

Mar-minus-Jan east-west dipole SST tendency: (10°S-10°N, 80°E-120°E) –
(10°N-20°N, 125°E-160°E)

NA_SST(T) North Atlantic SST tendency
Mar-minus-Jan north-south tripolar SST tendency: (0-20°N, 60°W-15°W) + 

(45°N-55°N, 55°W-40°W) – (25°N-40°N, 65°W-40°W)

EA_T2m(T) East Asia T2m tendency Mar-minus-Jan T2M averaged over (40°N-60°N, 70°E-130°E)

TWRI = 0.393×IOWP_SST(T) + 0.374×NA_SST(T) + 0.329×EA_T2m(T)

2-month lead predictors

IOWP_SST(T)
Indo-Pacific warm pool SST 

tendency

Feb-minus-Dec east-west quadrupole SST tendency: (5°S-15°N, 70°E-100°E) 

+ (15°N-25°N, 125°E-160°E) + (5°S-5°N, 170°E-160°W) –

(5°S-10°N, 125°E-160°E)

NA_SST(T) North Atlantic SST tendency
Feb-minus-Dec north-south tripolar SST tendency: (0-15°N, 60°W-20°W) + 

(35°N-50°N, 70°W-30°W) – (20°N-30°N, 80°W-50°W)

EA_T2m(T) East Asia T2m tendency Feb-minus-Dec T2M averaged over (55°N-75°N, 90°E-140°E)

TWRI = 0.406×IOWP_SST(T) + 0.380×NA_SST(T) + 0.147×EA_T2m(T)

Predictand: The normalized time series of MJ rainfall anomaly averaged over Taiwan 

(21°N–26°N, 119°E–123°E, TWRI)



Fig.2 The same as in Fig.1 but for TWRI.

2013-2017 TWRI verification (0-month lead)
(period in the paper: 1979-2012)



3. MJ mean EA rainfall pattern

Ref: 

Wen Xing, Bin Wang, 

So-Young Yim, and K.-J. 

Ha, 2017: Predictable 

patterns of the May–June 

rainfall anomaly over 

East Asia, J. Geophys. 

Res. Atmos., 2017, 

122(4), 2203-2217. 



Predictand: MJ mean EA(20°N–45°N, 100°E–130°E) rainfall anomaly pattern

Mode Name Meaning Definition

PC1

EQ_SST(P)
Equatorial Pacific persistent 

SST

JFMA mean zonal tripolar SST: (5°S–10°N, 120°W–80°W)+(10°S–

20°N, 80°E–140°E) – (5°N–15°N, 160°E–160°W)

EUWP_ST(T)

Eurasia-northwestern Pacific 

surface temperature (SST over 

ocean and T2m over continent) 

tendency

MA-minus-JF tendency in T2m averaged over (40°N–60°N, 50°E–120°E) 

minus that in SST averaged over (15°N–30°N, 120°E–180°E)

NA_SST(P) North Atlantic persistent SST
JFMA mean meridional tripolar SST: (0–15°N, 60°W–15°W) + (40°N–

55°N, 60°W–30°W) – (25°N–35°N, 80°W–45°W)

PC1=0.51×EQ_SST(P) + 0.57×EUWP_ST(T) + 0.08×NA_SST(P)

PC2

NP_SST(P) Northern Pacific persistent SST
JFMA mean east-west dipole SST: (30°N–50°N, 150°W–130°W) –

(30°N–45°N, 150°E–180°E)

IO_SST(P) Indian Ocean persistent SST JFMA mean SST averaged over (45°S–10°S, 90°E–120°E)

NIO_SST(T)
Northern Indian Ocean SST 

tendency
MA-minus-JF SST averaged over (0°–15°N, 50°E–110°E)

PC2=－0.26×NP_SST(P) + 0.51×IO_SST(P)－0.23×NIO_SST(T)

PC3

CP_SST(P)
equatorial-south central Pacific 

persistent SST
JFMA mean SST averaged over (20°S–5°N, 175°E–155°W) 

NEP_SST(T) Northeast Pacific SST tendency
MA-minus-JF dipole SST: (20°N–35°N, 180–150°W) – (5°N–20°N, 

160°W–130°W) – (20°N–35°N, 140°W–120°W)

NEA_SLP(P) Northeast Asia persistent SLP JFMA mean SLP averaged over (40°N–60°N, 115°E–140°E)

PC3=－0.23×CP_SST(P) + 0.21×NEP_SST(T) + 0.46×NEA_SLP(P)



2018 prediction

Fig.3 The observed (contours) and predicted (shading) rainfall anomalies during 2016 and 2017 respectively

(mm day-1). The numbers in the top left corner of each figure indicate the PCC skill for each year.

Fig.4 The predicted MJ mean 

rainfall anomalies over EA 

during 2018 (mm day-1). 

2016-2017 verification
(period in the paper: 1979-2015) Contour: OBS; Color: prediction



4. JA mean southeast Asia (SEA) rainfall pattern 

SEA

Ref: Wen Xing, Bin Wang, So-Young Yim, 2016: Peak-Summer East Asian Rainfall 

Predictability and Prediction Part I: Southeast Asia, Climate Dynamics, 2016, 47 (1): 1-13.



Predictand: JA mean Southeast Asia (SEA, 100°E–140°E, 5°N–26.5°N) rainfall anomaly pattern

Mode Name Meaning Definition

PC1

IOWNP_
SST(P)

Indo-Pacific warm pool persistent 
SST

MAMJ mean east-west dipole SST: (50°E–110°E, 5°N–20°N) –
(125°E–180, 5°N–20°N)

EP_SLP(T)
Tropical eastern Pacific SLP 
tendency

MJ-minus-MA SLP averaged over (150°W–70°W, 20°S–20°N)

PC1=0.4825×IOWNP_SST(P) + 0.4977×EP_SLP(T)

PC2

CP_SST(P)
Tropical central Pacific persistent 
SST

MAMJ mean SST averaged over (175°E–150°W, 10°S–10°N) + 
(150°W–125°W, 0–20°N)

NEU_T2M
(P)

Northern Eurasia persistent T2M MAMJ mean T2M averaged over (100°E–140°E, 55°N–70°N)

IOWP_SST
(T)

Indo-Pacific warm pool SST 
tendency

MJ-minus-MA SST average over (120°E–140°E, 5°N–25°N) + 
(125°E–145°E, 20°S–0) + (70°E–90°E, 5°S–15°N)

PC2=0.2366×CP_SST(P) – 0.2649×NEU_T2M(P) + 0.4581×IOWP_SST(T)

PC3

MC_SST(P) Maritime continent persistent SST
MAMJ mean SST averaged over (35°E–60°E, 35°S–5°N) + (85°E–
100°E, 5°S–5°N) + (100°E–130°E, 15°S–5°S)

AH_SLP(P) Australian High persistent SLP
MAMJ mean north-south dipole SLP: 
(90°E–140°E, 30°S–10°S) – (105°E–145°E, 55°S–40°S)

NA_SLP(P) North Atlantic persistent SLP
MAMJ mean north-south dipole SLP: 
(80°W–35°W, 15°S–25°N) – (80°W–45°W, 45°N–60°N)

PC3=-0.3630×MC_SST(P) + 0.2410×AH_SLP(P) + 0.3311×NA_SLP(P)

PC4

WPEP_SST
(P)

western-central/eastern Pacific 
persistent SST

MAMJ mean east-west dipole SST: (125°E–150°E, 0–20°N) –
(170°E–120°W, 0–10°N)

TP_T2M(P) Tibetan Plateau persistent T2M MAMJ mean T2M averaged over (85°E–100°E, 20°N–35°N)

NP_SLP(P) Northern Pacific persistent SLP MAMJ mean SLP averaged over (155°E–175°W, 50°N–75°N)

PC4=0.2575×WPEP_SST(P) + 0.2881×TP_T2M(P) + 0.3917×NP_SLP(P)



Fig.7 The same as in Fig.3 but for JA rainfall anomalies over SEA

2014-2017 verification
(period in the paper: 1979-2013) Contour: OBS; Color: prediction



5. JA mean northeast Asia (NEA) rainfall pattern 

Ref: So-Young Yim, Bin Wang, Wen Xing, 2016: Peak-summer East Asian rainfall 

predictability and prediction part II: extratropical East Asia, Climate Dynamics, 2016, 47 (1): 

15-30.

NEA



Predictand: JA mean Northeast Asia (NEA, 100°E–140°E, 26°N–50°N) rainfall anomaly pattern

Mode Name Meaning Definition

PC1

EWP_SST(P) Equatorial western Pacific persistent SST MAMJ mean SST averaged over (120°E–160°E, 10°S–15°N)

NH_SLP(P) North Asia persistent SLP
MAMJ mean east-west dipole SLP: (155°E°170°W, 50°N–65°N) − 

(70°E–110°E, 50°N–70°N)

IO_SST(T) Indian Ocean SST tendency
MJ-minus-MA SST averaged over (40°E–60°E, 20°S–0°) + (50°E–75°E, 

0°–20°N)

SEA SLP(T) Southeast Asia SLP tendency MJ-minus-MA SLP averaged over (80°E–130°E, 10°N–30°N)

PC1=0.07×EWP_SST(P) + 0.311×NH_SLP(P) - 0.428×IO_SST(T) - 0.322×SEA_SLP(T)

PC2

NIO_SST(P) Northern Indian Ocean persistent SST MAMJ mean SST averaged over (50°E–100°E, 0–20°N)

SWIO_SLP(P) Southwest Indian Ocean persistent SLP MAMJ mean SLP averaged over (30°E–75°E, 30°S–10°N)

WPIO_SST(T)
Western Pacific and Indian Ocean SST 

tendency

MJ-minus-MA SST averaged over (50°E–90°E, 5°N–20°N) + (70°E–

90°E, 10°S–5°N) + (125°E–145°E, 15°S–20°N)

PC2=0.353×NIO_SST(P) - 0.326×SWIO_SLP(P) + 0.375×WPIO_SST(T)

PC3

CP_SLP(P) Central Pacific persistent SLP MAMJ mean SLP averaged over (160°E–140°W, 40°S–30°N)

NP_SST(T) North Pacific SST tendency
MJ-minus-MA northwest-southeast dipole SST: (180°–155°W, 30°N–

40°N) − (180°–150°W, 10°N–20°N) − (145°W–125°W, 25°N–40°N)

SWPCP_SST

(T)

Southwestern-Central Pacific SST 

tendency

MJ-minus-MA southwest-northeast dipole SST: (150°E–150°W, 30°S–

15°S) − (150°W–90°W, 0–15°N)

PC3=0.352×CP_SLP(P) + 0.314×NP_SST(T) + 0.195×SWPCP_SST(T)

PC4

NP_SLP(P) North Pacific persistent SLP
MAMJ mean north-south dipole SLP: (120°E–150°W, 20°N–40°N) -

(150°E–90°W, 55°N–75°N)

NA_SLP(T) North Atlantic SLP tendency MJ-minus-MA SLP averaged over (90°W–45°W, 45°N–60°N)

WEU_T2m(T) Western Eurasia T2m tendency
MJ-minus-MA east-west dipole T2m: (30°E–60°E, 40°N–60°N) − 

(10°W–10°E, 40°N–60°N)

PC4= 0.324×NP_SLP(P) - 0.380×NA_SLP(T) + 0.392×WEU_T2m(T)



Fig.8 The same as in Fig.3 but for JA rainfall anomalies over NEA

2014-2017 verification
(period in the paper: 1979-2013)

Contour: OBS; Color: prediction



6. JJA mean northwestern China (NWCN) rainfall pattern 

Ref: 

Wen Xing, Bin 

Wang,2016: 

Predictability and 

prediction of summer 

rainfall in the arid and 

semi-arid regions of 

China, Climate 

Dynamics, 2016, 49(1-

2), 419-431.



Mode Name Meaning Definition

PC1

WP_SST(P)
Western Pacific 

persistent SST

0-month lead: FMAM mean SST averaged over (145oE-165oE, 20oS-15oN)

1-month lead: FMA mean SST averaged over (145oE-165oE, 20oS-15oN)

CEP_SST(T)

Central to 

eastern Pacific 

SST tendency

0-month lead: AM-minus-FM SST  averaged over (160oE-90oW, 0-15oN)

1-month lead: April-minus-FM SST  averaged over (160oE-90oW, 0-15oN)

EUA_T2m(P)
Eurasia 

persistent T2m

0-month lead: FMAM mean east-west dipole T2m: (50oE-80oE,20oN-50oN) – (100oE-

140oE, 45oN-60oN)

1-month lead: FMA mean east-west dipole T2m: (50oE-80oE ,20oN-50oN) – (90oE-

120oE, 50oN-70oN)

0-month lead equation: －0.28×WP_SST (P)－0.35×CEP_SST (T)－0.44×EUA_T2m (P)

1-month lead equation: －0.24×WP_SST(P)－0.41×CEP_SST (T)－0.39×EUA_T2m (P)

PC2

IO_SST(P)
Indian Ocean 

persistent SST

0-month lead: FMAM mean SST averaged over (40oE-120oE, 30oS-20oN)

1-month lead: FMA mean SST averaged over (40oE-120oE, 30oS-20oN)

EUA_T2m(P)
Eurasia 

persistent T2m

0-month lead: FMAM mean T2m averaged over (80oE-120oE, 50oN-75oN)

1-month lead: FMA mean T2m averaged over (80oE-120oE, 50oN-75oN)

TP_T2m(T)
Tibetan Plateau 

T2m tendency

0-month lead: AM-minus-FM T2m averaged over (80oE-110oE, 20oN-40oN)

1-month lead: April-minus-FM T2m  averaged over (80oE-110oE, 20oN-40oN)

0-month lead equation: 0.42×IO_SST (P)＋0.37×EUA_T2m (P)－0.35×TP_T2m (T)

1-month lead equation: 0.49×IO_SST (P)＋0.40×EUA_T2m(P)－0.37×TP_T2m(T)

Predictand: JJA mean percentage of precipitation anomaly over the region of northwestern 

China where the climatological summer daily mean rainfall is less than 3 mm day−1



Fig.5 The same as in Fig.3 but for JJA rainfall percentage anomalies over NWCN.

Fig.6 The same as in 

Fig.4 but for JJA rainfall 

percentage anomalies 

over NWCN.

2016-2017 verification
(period in the paper: 1979-2015)

2018 prediction



Part III: Prediction of extreme 
events: 

Heavy rains, cold surges and 
heat waves in China



This talk covers 
Seasonal prediction of 

Heavy rainfall, cold surges, and heat waves in China

• Li , Juan and Bin Wang, 2017: Predictability of summer extreme 
precipitation days over eastern China. Climate Dyn. DOI 
10.1007/s00382-017-3848-x 

• Luo, Xiao and Bin Wang, 2017: Predictability and prediction of the 
total number of winter extremely cold days over China. Climate Dyn., 
DOI 10.1007/s00382-017-3720-z

• Gao, Miani, Bin Wang, and Jing Yang, 2017: Are sultry heat wave days 
over central eastern China predictable? J. Climate, 31, 2185-2196.



I. Predictability of the total number of extreme 
precipitation days (EPDs) over eastern China

Li , Juan and Bin Wang, 2017: Predictability of summer 
extreme precipitation days over eastern China. Climate 
Dyn. DOI 10.1007/s00382-017-3848-x 



Definition of EPDs

 EPD: Daily precipitation is beyond the 90th percentile threshold of all
rainy records (daily rainfall >0.1mm) for the whole 35 years (1979–
2013).

 Each station defines its own threshold in the same manner.
 NEPD: The number of days when the daily precipitation exceeds the

corresponding threshold is regarded as NEPDs.



Regional EPDs indices: SC (MJ) and NC(JA)
Seasonal march of climatological monthly mean EPDs from April to September 

Maximum center of EPDs:
South China (SC, south of 30oN) in May-June (MJ),
North China (NC, north of 30oN) in July-August (JA).
All stations over the eastern China are divided into two domains: SC and NC.

Climatological annual cycle 
of EPDs (red bar), mean
precipitation (blue bar) 
averaged over SC and NC



CC(EPD&MP)=0.98

CC(EPD&MP)=0.96

EPDs trend:0.02 days/year
MT trend: 0.031 oC/year

EPDs trend:0.004 days/year
MT trend: 0.032 oC/year

Normalized time series

Prediction of EPDs ~= Prediction of Mean precipitation

1999-2002 Drought

Shift in 1993

MJ JA

EPD trends?



Global scale anomalies 
associated with 

EPDs over SC (MJ) 

Simultaneous (MJ) correlation fields associated with
EPDs-SC

The lead–lag correlation coefficients between 
equatorial Indian-Pacific (40oE–80oW) SST anomalies 

averaged between 5oS and 5oN and EPDs-SC



One predictor for EPDs-SC

One Predictors for EPDs-SC (MJ)

The lead-lag correlations between predictor SC-a and MJ fields

Predictor SC-a: SLP(40oS-20oN, 
100oE-160oW) in March-April

SLP&850hPa wind SST Precipitation

March-April



The lead–lag correlation coefficients between 
equatorial Indian-Pacific (40oE–80oW) SST anomalies 

averaged between 5oS and 5oN and EPDs-NC

Global scale anomalies 
associated with 

EPDs over NC (JA) 



First predictor for EPDs-NC

The lead-lag correlations between predictor NC-a and JA fields

Predictor NC-a: SST(10oS-10oN, 
120oE-80oW) from Dec.-Jan. to
May-June

SLP&850hPa windSST Precipitation

SST tendency MJ-DF

First Predictors for EPDs-NC (JA)



Second predictor for EPDs-NC

The lead-lag correlations between predictor NC-b and JA fields

Predictor NC-b: 2mT (35oN-60oN, 
35oE-90oE) from Dec.-Jan. to
May-June

SLP&850hPa wind2mT(shading), 200hPa GH(contour) Precipitation

Second Predictors for EPDs-NC (JA)



Summary of Predictors for EPD-SC (Red) and EPD-NC (Blue)



(a) Cross-validated
reforecast. Leave-three-
out cross validation is
used to validate the
reforecast skill for 1979-
2000.

(b) Independent forecast.
The PEM is built with the
training data for 1979–2000,
and independent forecast
for the 13-year period of
2001–2013. All predictors
are selected from the
period of 1979–2000.

Two validation methods

MSSS=1-
𝑀𝑆𝐸

𝑀𝑆𝐸𝑐
,



II. Predictability of the total number of winter 
extremely cold days over China

• Luo, Xiao and Bin Wang, 2017: Predictability and prediction 
of the total number of winter extremely cold days over 
China. Climate Dynamics, DOI 10.1007/s00382-017-3720-z



Even for winter temperature the current dynamical model 
also lacks prediction skill over China

ENSEMBLE MME 
hindcast
(1960-2005)

China domain 
averaged temporal 
correlation skill is 
limited : 0.23

dynamical prediction 

(limited skill) 

Luo and Wang 2017

Temporal correlation skill at each grid point



Definition of Extremely Cold Day

Time series of NECD for 1973-2013 (41 years) 

 ECD: Daily mean temperature lower the 10th percentile 

values of each month during DJF.

 NECD: total number of ECD at each 2.5 by 2.5 grid.

Questions:

•What are the major regional modes of NECD in China?

•What are the physically consequential precursors  for 
predicting NECD over China? 

•What is the predictability of winter NECD over China?



NECD-MC

NECD-NE

What are the major regional modes of NECD in China?

Detected by REOF analysis 
Spatial patterns of the first two modes

Detected by k-means cluster analysis
3 clusters 



Time series of (a) NECD-NE and (b) NECD-MC indices CC:0.48

Predictands: NECD-NE and NECD-MC (1973-2013)

NECD-NE

NECD-MC

Decreasing trends?



T2m

H500

SLP
+ +

- a North-South 
dipolar pattern 

Negative AO 

What DJF Circulation anomalies are associated with high NECD?

NE MC

Northern Mode

Southern Mode



Winter circulation anomalies 

regressed to precursor

ARCT-NE

Contour：SLP

Shading：T2m

H500

Mechanism:

Arctic warming in SO persists into the next winter

induce an anticyclonic anomaly extending from polar 

region to Ural Mountain  (Kug et al. 2015 )

Rossby wave propagation lead to downstream low 

pressure anomalies that deepen and shift westward East 

Asian trough  (Kug et al. 2015 )

How ARC-SST affect NECD over NE



TNPSST-MC

How developing La Nina enhances NECD over MC

Model simulated DJF anomaly associated with TNPSST-MC

TNPSST-MC related nudged SO SST field in for 

(+) SST experiment 

Differences in the ensemble mean DJF surface between 
(+) SST and (-) SST experiment 



LCC map of Snow cover and (left) NECD-NE
(right) NECD-MC

Snow-MC(A+C)

How fall Snow anomalies affect NECD 

Snow-NE(A+B+C)



Autumn predictors for NECD over NE (Pink) and MC(Green)

Normalized Simulation equation:

NECD-NE= 3.67*SNOW-NE+2.16*ARCT-NE

NECD-MC= 2.08*SNOW-MC+2.37*TNPSST-MC

Predictor 1: SSTA(SO)

Predictor 2: Oct. Snow Cover

Predictor 3:  SSTA 
(developing ENSO)



Cross-validated Prediction skills of the PEM

NECD-NE:                                   NECD-MC: 
R=0.78, MSSS=0.59                    R=0.73, MSSS=0.54



TCC Skill:
~0.7

MSSS Skill:
~0.5

Spatial distribution of prediction skill of NECD based on multiple 

regression using the four identified predictors 

Hindcast Prediction skills of the PEM for each station



III. How predictable is the total number of sultry heat 
wave days in July-August over central eastern China?

• Gao, Miani, Bin Wang, Jing Yang, Wenjie Dong, and Zhangang
Han, 2018: Are sultry heat wave days over central eastern 
China predictable? J. Climate,  31, 2185-2196.



Sultry HWDs Definition: Tmax ≥ 35℃ & RH ≥ 60%

 The integrated predictand is highly 

representative of the HWDs at each 

grid over YHRB



Local characteristics

What happens during severe HW years?

Low-level 
anticyclone

Descending motion
High pressure

Decreasing 
cloud cover

Increasing 
solar radiation

A



What happens during HW?

Developing EP-La 
Niña

Circum-global 
teleconnection (CGT)

Global scale settings



Searching for predictors
2 SST Predictors

Cor. HWDs EP-SST NAO-SST

HWDs 0.53 0.54

EP-SST 0.39

NAO-SST

The correlation coefficients between 

predictand and predictors

The bold numbers denote statistically significant 

at 99% confidence level

 Zonal dipole SST tendency in

Pacific, EP-SST

Meridional tripole SST over North

Atlantic, NAO-SST



EP-SST Predictor

Decaying 
CP-El Niño

in early spring

Developing
EP-La Niña

in late summer

Modifies Walker 
circulation

Enhances maritime continent 
convection, induces P-J 

teleconnection

Reinforces equatorial CP 
convection, induces Rossby 

wave responses 

(Nitta 1987; Wang et al. 2013)

Zonal dipole SST tendency in Pacific



Tripole SST 
over North 
Atlantic in 

winter 

Persists to the following 
summer through positive 
air-sea feedback and 
ocean memory effect

Excites CGT

(Ding and Wang 2005; Pan 2005; Wu et al. 2009; Ding et al. 2011)

NAO-SST Predictor

SST in JA

SST persistent 

component (winter 

to summer)

Meridional tripole SST over North Atlantic



Summary: Predictors for HWDs over YHRB

Normalized Simulation equation:

HWDs = 0.377×EP-SST + 0.388×NA-SST

Predictor 2: Tripole SST

Predictor 1:  Dipole SST tendency 



Forecast validation

Simulation

Cross-validation

Forward rolling forecast 

Independent Forecast

1981-20015: 0.66

1996-2015: 0.73



Mahalo!
Any 
comment?

http://www.tonyandkitty.com/gallery/album01/Diamond_Head?full=1


24-y independent forecast validation (1989-2012)

Training period 1900-1988 Forecast

R=0.61 R=0.51

Practical predictability estimate



Summary

Strong year-to-year variations 
of HWDs over YHRB 

Low-level Anticyclone

WP high pressure anomaly

Zonal dipole SST 
tendency pattern in 

Pacific

CP-La Niña

Modifies Walker 
circulation

Meridional tripole
SST pattern over 

North Atlantic

Persists from winter to 
summer

Excites CGT 

About 55% of the total variance of HWDs over YHRB may be potentially predictable. 



Dashed contour: 0.35

Four dynamical models’ MME Temporal correlation skill for JJA rainfall (1979-2010)

NCEP CFS version 2 (Saha et al. 2011), ABOM POAMA version 2.4 (Hudson et al. 2011), 

GFDL CM version 2.1 (Delworth et al. 2006), and FRCGC SINTEX-F model (Luo et al. 2005). 

AAM

0.31

Wang et al. 2015b

Dynamic Prediction of summer land monsoon rainfall



Data
 Daily rainfall data：

Daily precipitation records of 746 stations over China for the period of 1979–2013 were
utilized. This dataset was obtained from the National Meteorological Information Center
of China Meteorological Administration.

 SST data :
Monthly mean sea surface temperature (SST) data were derived from an arithmetic

mean of two datasets: HadISST (Rayner et al. 2003) and ERSST version 4 (Huang et al.
2015) for 1979–2013.

 SLP, 850 hPa wind, 2 m temperature and 200hPa geopotential height data:
The monthly sea level pressure (SLP), 2-meter temperature, 200hPa geopotential height

and 850 hPa winds were obtained from the ERA-Interim Reanalysis (Dee et al. 2011)
during 1979–2013.

 Global rainfall data:
The global monthly mean precipitation data from GPCP(v2.3) datasets (Adler et al. 2003) 

were employed to analyze the global precipitation from 1979 to 2013.



Summary (EPDs)
 Based on the region- and season-dependent variability of EPDs, two domain-averaged 

EPDs indices during their local high EPDs seasons (May-June for SC and July-August for NC) 
are therefore defined. 

 The increased EPDs over SC are controlled by Philippine Sea anticyclone anomalies in May-
June duringa rapid decaying El Nino and controlled 

 The increased EPDs over NC are accompanied by a developing La Nina and anomalous 
zonal sea level pressure contrast between the western North Pacific subtropical high and 
East Asian low in July-August.

 The causative relationships between the predictors and the corresponding EPDs over each 
region are discussed using lead-lag correlation analyses.

 Using these selected predictors, a set of PEMs is derived. The 13-year (2001–2013) 
independent forecast shows significant temporal correlation skills of 0.60 and 0.74 for the 
EPDs index of SC and NC, respectively, thus providing an estimation of the predictability for 
summer EPDs over eastern China. 

Discussion
 Further well-designed numerical experiments are needed to test the speculations (physical

meanings of the predictors) proposed in the present study.
 The predictors derived from the current 35 years of data may vary with time or experience

secular changes.



China can be classified into 3 homogeneous regions with with

coherent variations of the NECD , i.e., NE, MC and the TP

Predictability of the NECD originates from SST and snow cover

anomalies in the preceding September and October.

For SST, The NE predictor is in the western Eurasian Arctic while the

MC predictor is over the tropical-North Pacific.

For snow cover, the NE predictor primarily resides in the central

Eurasia while the MC predictor is over the western and eastern

Eurasia.

about 60% (55%) of the total variance of the NECD in Northeast

(Main) China is likely predictable with one month lead time .

Conclusions



Introduction

Heat wave (HW) brings widespread impacts on human
health, society, economy and ecosystems.

• 2003 HW in Europe: 70000 deaths; Crop losses of around
US$12.3 billion (Robine et al. 2003; Schär & Jandritzky,
2003)

• 2010 HW in Russia: 54000 deaths; Economic damage of
1.4% GDP (Porfiriev，2014)

• 2013 HW in China: 5758 heat-related cases (Gu et al. 2016)

HW in China increased in recent decades and will occur

with a higher frequency and longer duration in the future

(e.g., Ding and Ke 2015; Collins et al. 2013).

 Improving HW prediction skill is important



Data(1961-2015)

Daily

CN05.1  (0.25 ° × 0.25° )

Monthly

NCEP/NCAR Reanalysis (2.5 ° × 2.5° ) 

Hindcast of 5 ENSEMBLES project  models initiated from May 1st (1961-2005)

Methodology

Physics-based empirical model (PEM)

Detrend

Data and Methodology



Target Season
July-August

 JA is the peak season of HW events characterized by high humidity
over eastern China (Ding & Ke 2015; Gao et al. 2017).

The northward migration of western North Pacific subtropical high in JA
provides a robust large scale circulation background for the HW
occurrence over YHRB.

（Wang et al. 2009）



4. How to build the Physics-based Empirical model ?

Physics-based Empirical model (Wang et al., 2015) is based on understanding
of the physical linkages between the predictors and predictand.

 Searching for the predictors :
1. Principle : physical meaning
2. Three fields : SST/2mT/SLP
3. Two types of precursory: persistent signals & tendency signals

 Stepwise regression -> significance & independency



• Understanding the origins of the predictability of summer EPDs is the first
step

• Take physical mechanisms into account can help increase the forecast skill

• Physics-based empirical (P-E) model has been successfully applied to
seasonal predictability studies of a variety of meteorological phenomena
(Xing et al. 2014; Yim et al. 2014; Wang et al. 2015; Grunseich and Wang
2016; Li and Wang 2016).

To what extent are the total summer extreme precipitation 
days (EPDs) over eastern China predictable? 



An EOF based PEM pattern prediction approach 

General procedure (Wang et al. 2014)

Derive frequently observed 

patterns; Reconstruct the 

total variation.

If the EOF patterns are physical 

meaningful, we will use it as 

potentially predictable patterns. 

If a PC can be predicted skillful, the 

corresponding EOF is considered as 

predictable mode. 

Use observed EOF patterns and 

predicted PCs to predict total 

rainfall anomaly pattern and 

estimate potential predictability 

Predicting the rainfall 

anomaly pattern by using 

the predictable modes.

Predicting the PCs by 

establishing a set of P-E 

prediction models.

Performing EOF 

analysis to NWC 

summer rainfall

Understanding the origin of 

the EOF patterns; Exploring 

the physical processes.

STEP 1 STEP 2 STEP 3 STEP 4

Establishment of P-E prediction models (Wang et al. 2015)

• Only two predictor fields:  SST/2m air temperature over land and SLP anomalies——Reflecting ocean and 

land surface anomalous conditions

• Only two types of signals in the lower boundary anomalies:

a) persistent signals from the previous seasons to the pre-forecaster season

reflect local positive feedback processes which may help maintain the lower boundary anomalies. 

a) tendency signals from the previous seasons to the pre-forecaster season :

denote changes before the pre-forecast season that often tip off the direction of subsequent evolution.



Wang et al.(2009)

Precipitation

13 CGCM Multi-model ensemble seasonal prediction skill

Climate prediction of rainfall is most difficult 

compared to temperature and circulations



Predictor Definition 

NC-a May-June minus December-January east-west dipole SST averaged over tropical Pacific(10S-10N, 

120E-80W)

NC-b May-June minus December-January 2mT averaged over northern Europe (35N-60N, 35E-90E)

SC-a March-April  mean SLP averaged over western Pacific (40S-20N, 100E-160W)

Table. Definitions of predictors for EPDs-NC and EPDs-SC



Predictand List

 MJ South China rainfall index

 MJ Taiwan rainfall index

 MJ EA rainfall pattern

 JJA northwestern China (NWCN) rainfall pattern

 JA southeast Asia (SEA) rainfall pattern 

 JA northeast Asia (NEA) rainfall pattern 



Data

1) Precipitation: 

GPCP V2.3 monthly (Jan/1979-Dec/2017)

2) T2m, SLP: 

NCEP2 monthly (Jan/1979-Mar/2018) 

NCEP1 daily (Apr/01/2018-Apr/18/2018)

3) SST: 

ERSST V5 monthly (Jan/1979-Mar/2018)

OISST daily (Apr/01/2018-Apr/18/2018)


